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Problem 1. If 0 < p < 1, let βp = pδ1 + (1 − p)δ0, and let β
(n)
p be the nth

convolution power of βp,

β(n)
p =

n!

k=0

n!

k!(n− k)!
pk(1− p)n−kδk.

If a > 0, let

λa = e−a
∞!

0

ak

k!
δk.

λa is called the Poisson distribution with parameter a. Prove the following.

(1) The mean and variance of λa are both a.
(2) λa ∗ λb = λa+b.

(3) β
(n)
a/n converges vaguely to λa as n → ∞.

Proof. Suppose John is playing tossing coins with Jane, John wins a dollar from
Jane if it’s head, and nothing if it’s tail (how unfair!). The coin is uneven, with
probability p showing head up in a single toss. Let n be the number of tosses Jane
made, and let Xn be the money John earned from Jane in the n-th round. It is clear
that X1, X2, . . . are independent random variables, whose probability distribution
is precisely PXn = βp. Now let Sn = X1 + · · · +Xn be the money John earned in
total in the first n rounds, we have

P (Sn = k) =

"
n

k

#
pk(1− p)n−k.

So PSn =
$n

k=0

%
n
k

&
pk(1 − p)n−kδk. On the other hand, PSn = PX1+···+Xn =

PX1 ∗. . . PXn = β∗n
p . By the end of this problem, we will show if n is big enough and

p is small with np = a, then the distribution of Sn is almost a Possion distribution
λa.

(1) Let Y be the random variable with PY = λa, i.e. P (Y = k) = e−a ak

k! .
Then

E(Y ) =

∞!

k=0

k · P (Y = k) =

∞!

k=1

e−a ak

(k − 1)!
= ae−a

∞!

k=1

ak−1

(k − 1)!
= a,

1
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and

σ2(Y ) =

∞!

k=0

(k −E(Y ))2 · P (Y = k) =

∞!

k=0

(k2 − 2ka+ a2)e−a a
k

k!

= e−a
∞!

k=1

k2
ak

k!
− 2ae−a

∞!

k=1

k
ak

k!
+ a2e−a

∞!

k=0

ak

k!

= e−a[

∞!

k=2

k(k − 1)
ak

k!
+

∞!

k=1

k
ak

k!
]− 2a2 + a2

= e−a[a2ea + aea]− a2 = a.

(2) Let Z be a random variable with PZ = λb and Y, Z independent. Then

P (Y + Z = k) =

k!

i=0

P (Y = i, Z = k − i) =

k!

i=0

P (Y = i, Z = k − i)

=

k!

i=0

P (Y = i)P (Z = k − i) =

k!

i=0

e−a a
i

i!
e−b bk−i

(k − i)!

= e−(a+b) 1

k!

k!

i=0

"
k

i

#
aibk−i = e−(a+b) (a+ b)k

k!
.

So λa ∗ λb = PY ∗ PZ = PY+Z = λa+b.
(3) Let Yn be a random variable with PYn

= β∗n
a/n, i.e.

P (Yn = k) =

"
n

k

#
(
a

n
)k(1− a

n
)n−k

for k = 0, 1, . . . , n. Taking limit n → ∞, we have

lim
n→∞

P (Yn = k) = lim
n→∞

"
n

k

#
(
a

n
)k(1− a

n
)n−k

= lim
n→∞

n!

nk · (n− k)!

ak

k!
(1− a

n
)n(1− a

n
)−k

= e−a a
k

k!
lim
n→∞

(1− 1

n
)(1− 2

n
) · · · (1− k − 1

n
)

= e−a a
k

k!
.

It follows that P (Yn ≤ k) converges to P (Y ≤ k) as n → ∞ for all k, and
thus P (Yn ≤ x) → P (Y ≤ x) as n → ∞ for all x ∈ R as Yn, Y are discrete.
Hence by Prop. 7.19, β∗n

a/n = PYn
→ PY = λa vaguely as n → ∞.

□
Remark. We note that the appearance of random variables is unnecessary in

solving problem 1, one can simply use the corresponding definitions for distribu-
tions. Also, the existence of sample spaces and such random variables is not trivial.
However I find it helps me understand the problem better by putting random vari-
ables in the picture.

Problem 2. If
$∞

1 n−2σ2
n < ∞, then limn−2

$n
1 σ

2
j = 0. If {an} ⊂ C and

lim an = a, then limn−1
$n

1 aj = a.
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Proof. (1) We remark this is a special case of Kronecker’s lemma. Let Sj =$j
k=1 k

−2σ2
k, and s = limSj . Using summation by part we get

1

n2

n!

j=1

σ2
j = Sn − 1

n2

n−1!

j=1

[(j + 1)2 − j2]Sj .

Now pick any ε > 0 and choose N so that Sj is ε close to s for n > N .
Then

Sn − 1

n2

n−1!

j=1

[(j + 1)2 − j2]Sj

=Sn − 1

n2

N−1!

j=1

[(j + 1)2 − j2]Sj −
1

n2

n−1!

j=N

[(j + 1)2 − j2]Sj .

As n → ∞, the first term converges to s, the second goes to 0. For the
third term we have

− 1

n2

n−1!

j=N

[(j + 1)2 − j2]Sj

=− 1

n2

n−1!

j=N

[(j + 1)2 − j2]s− 1

n2

n−1!

j=N

[(j + 1)2 − j2](Sj − s)

=− n2 −N2

n2
s−− 1

n2

n−1!

j=N

[(j + 1)2 − j2](Sj − s).

Here the first term goes to −s, and the second is bounded by εn
2−N2

n2 ≤ ε.
This proves

lim
n→∞

1

n2

n!

j=1

σ2
j ≤ ε

for all ε > 0, therefore the limit is 0.
(2) Since {an} is convergent, it is bounded by some M > 0. Fix ε > 0, there is

N so that for all n > N we have |an − a| ≤ ε. Thus for n > N we have

1

n

n!

1

aj =
1

n

N!

1

aj +
1

n

n!

N+1

aj .

Note that the first term 1
n

$N
1 aj is bounded by NM/n → 0 as n → ∞.

As for the second term, we have

| 1
n

n!

N+1

aj − a| ≤ | 1
n

n!

N+1

(aj − a)|+ N

n
|a| ≤ ε+

N

n
|a|.

Hence lim sup | 1n
$n

1 aj − a| ≤ ε for all ε > 0. This proves lim 1
n

$n
1 aj = a.

□

Problem 3. If {Xn} is a sequence of independent random variables such that
E(Xn) = 0 and

$∞
1 σ2(Xn) < ∞, then

$∞
1 Xn converges almost surely.
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Proof. We denote Ak,n(ε) = {ω ∈ Ω : max0≤j≤n |Xk +Xk+1 + · · ·+Xk+j | ≥ ε}
and Ak(ε) = ∪∞

n=0Ak,n(ε), A(ε) = ∩kAk(ε). It is clear Ak,n ⊂ Ak,n+1 and Ak ⊃
Ak+1. Notice by Kolmogorov inequality, we have

P (Ak,n(ε)) ≤ ε−2
n+k!

j=k

σ2(Xj) ≤ ε−2
!

j≥k

σ2(Xj).

Hence P (Ak(ε)) = P (∪nAk,n(ε)) = limn P (Ak,n(ε)) ≤ ε−2
$

j≥k σ
2(Xj). So

P (A(ε)) = P (∩kAk(ε)) = lim
k→∞

P (Ak(ε)) = 0.

Now we claim
$∞

1 Xn is Cauchy a.s.. Indeed, suppose ω ∈ Ω so that
$∞

1 Xn is
not Cauchy, then there exists ε > 0, so that for all N > 0, we can find k > N and
n > 0 such that |Xk(ω)+ · · ·+Xk+n(ω)| ≥ ε. This means we may find an increasing
sequence k1, k2, · · · → ∞ and n1, n2, . . . so that |Xk1(ω) + · · · + Xk1+n1(ω)| ≥ ε.
Thus ω ∈ Akj ,nj (ε) ⊂ Akj (ε) for all j. Hence ω ∈ ∩jAkj (ε) = A(ε), which is a

measure zero set. And the set where
$∞

1 Xn fails to be Cauchy is contained in
∪ε>0A(ε) = ∪m≥1A( 1

m ), which is a measure zero set. □

Problem 4. If {Xn} is a sequence of i.i.d. random variables which are not in L1,
then lim supn−1|

$n
1 Xj | = ∞ almost surely.

Proof. Let Sn =
$n

1 Xj , we notice that |Xn| = |Sn − Sn−1| ≤ |Sn| + |Sn−1|, so
lim supn−1|Sn| ≥ 1

2 lim supn−1|Xn|. Therefore it suffices to show lim sup |Xn|/n =
∞ a.s., or equivalently lim sup |Xn|/n ≥ m a.s. for all m ∈ N.

Now we fix m ∈ N, let An = {|Xn| ≥ mn}. We claim
$∞

1 P (An) = ∞. Indeed

∞!

1

P (An) =

∞!

1

λ({t : |t| > mn}) =
∞!

n=1

∞!

k=n

λ({t : mk < |t| ≤ mk +m})

=

∞!

k=1

kλ({t : mk < |t| ≤ mk +m})

=
1

m

∞!

k=1

(mk +m)λ({t : mk < |t| ≤ mk +m}) k

k + 1

≥ 1

2m

'
|t|dλ(t) = ∞.

Since Xn’s are independent, so are An’s. Therefore by Borel-Cantelli lemma

P (lim supAn) = 1.

This precisely means lim sup |Xn|/n ≥ m almost surely. □

Problem 5. (Shannon’s Theorem) Let {Xi} be a sequence of independent random
variables on the sample space Ω having the common distribution λ =

$r
1 pjδj where

0 < pj < 1,
$r

1 pj = 1, and δj is the point mass at j. Define random variables
Y1, Y2, ... on Ω by

Yn(ω) = P ({ω′ : Xj(ω
′) = Xj(ω) for 1 ≤ j ≤ n}) .

Prove the following.

(1) Yn =
(n

1 pXj .

(2) n−1 log Yn →
$r

1 pj log pj almost surely.
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Proof. (1) By independency, Yn(ω) =
(n

1 P (Xj = Xj(ω)) =
(n

1 pXj(ω). The
last equality can be a little confusing. We explain as follows. Denote
Xj(ω) = k, then since Xj has distribution λ =

$
i piδi, we have P (Xj =

k) = pk, i.e. P (Xj = Xj(ω)) = pXj(ω).

(2) From (1), we have n−1 log Yn = n−1
$n

1 log pXj
. Since X ′

js are independent
and identically distributed, so are log pXj ’s whose expectation is

E =

r!

k=1

P (Xj = k) · log pk =

r!

1

pk log pk.

Therefore by central limit theorem, n−1 log Yn →
$r

1 pk log pk almost surely.
□


